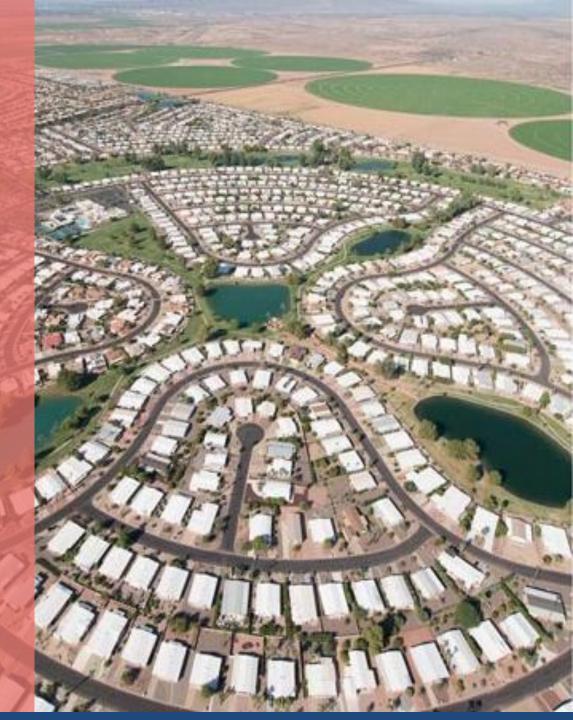


- 1. Team Members + Roles
- 2. Objectives
- 3. Tasks + Timelines
- 4. Methodology + Data Collection
- 5. Sampling Plan Review
- 7. Initial ETO Ideas + Feedback
- 8. QA on Project

Project Partners

US Department of Energy
Pacific Northwest National Lab
Institute for Market Transformation
SWEEP

Utah Clean Energy


Nexant

WC3

Governor's Office of Energy Dev.

Dominion Energy

Rocky Mountain Power

Institute for Market Transformation

Role

- Overall project management
- Stakeholder engagement
- Education coordination and oversight

Contact Info

Kimberly Cheslak

kimberly.cheslak@imt.org

(240) 676-1681

Utah Clean Energy

Role

- Coordination assistance in state
- Stakeholder engagement
- Education and outreach

Point Person

Kevin Emerson

Southwest Energy Efficiency Project

Role

- Stakeholder engagement
- REEO Partner

Point Person

Jim Meyers

Nexant

Role

Baseline Assessment Data Collection

Point Person

Matt Meyer

West Coast Code Consultants

Role

- Training Needs Assessment
- Curriculum Development
- Training Development
- Conduct Statewide Training

Point Person

Brent Ursenbach

Additional Partners/Support From

Governor's Office of Energy Development

Dominion Energy

Rocky Mountain Power

US Department of Energy

Pacific Northwest National Labs

Energy Code Stakeholder Group

Role

- Feedback on Sampling Plan
- Guide Curriculum Development
- Feedback on Education Implementation

Point Person

(Look to your left and right)

Goals of the Field Study

Collect field data to generate baseline compliance rate across two states (Arizona and Utah)

Develop targeted education programs to address key measures that will result in the largest savings

Pilot jurisdictional administrative enforcement mechanisms that may increase compliance without education

Why Federal (DOE) Interest?

DOE's interest is energy— study seeks data to assess use

States and localities voiced need for additional support

Seeking a consistent approach

Testing a methodology that any interested state can implement

How projects selected—submissions, competitive process, review board

Why Utah?
Dry Climate
Zone

Establish empirical data set showing the amount of savings available

State and industry investments

- No information that identifies people or individual homes will be submitted to DOE/PNNL
- Findings reported only on a statewide or climate zone basis
- Code officials will provide only addresses of qualifying homes—they will not be present for onsite data collection
- No owner-occupied homes will be included
- Blower door and duct testing results will be shared with builders upon request
- Each house visited only one time—not enough information to determine 'compliance' for an individual home or jurisdiction

Study **Benefits**

Consumers/Homebuyers: Lower energy bills—assurance that code-intended savings are realized

Builders & Code Officials: Level playing field, better market data (e.g. relative to existing homes), protected competitive advantage, free training, reduced burden/risk

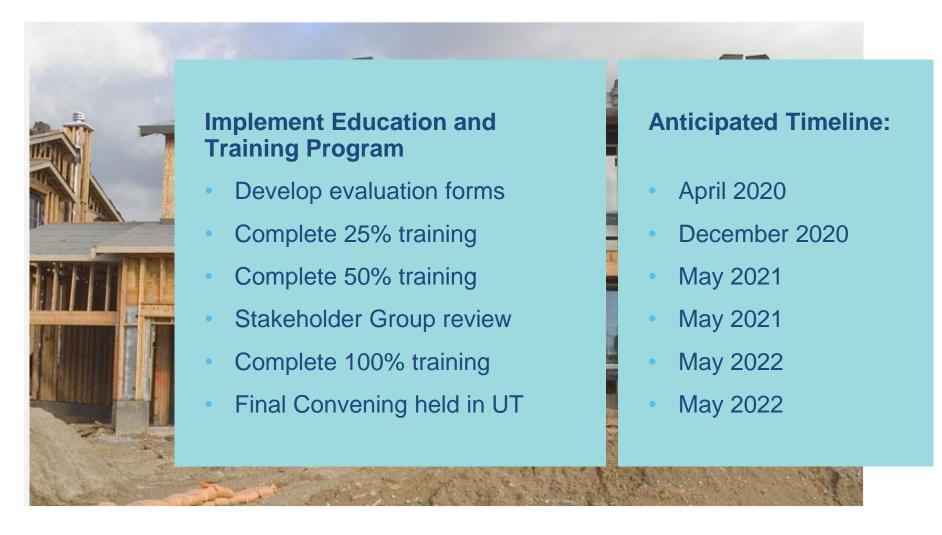
Study **Benefits**

Utilities: Cost & savings data to enable future investments, increased accuracy in forecasting, better connection to code implementation infrastructure

State & Local Governments: Federal tax dollars gives direct benefits to local businesses, enhanced ability to provide training & education programs, and may complement existing policies and energy goals

Develop Education and Training Program

- Develop E&T approach
 - Types, attendance targets, distribution across state
 - Optional administrative enforcement program
- Develop E&T materials
 - Review existing materials
 - Identify need for new materials
- Convene Stakeholder Group for review of E&T approach + materials


Anticipated Timeline:

 Oct 2019 – March 2020 (first pass)

 Oct 2019 – March 2020 (first pass)

Summer 2020 (target)

Field Study Background

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Residential Building
Energy Code Field Study
Data Collection & Analysis Methodology

Original FOA

- DOE funded 8 states
- Methodology was tested and refined
- Studies were see-do-see testing if education could close compliance gaps

Current studies (UT/AZ and CO/NV)

- Expansion into dry climate zones and home rule states
- See-do only no repeat assessment at the end

Methodology Highlights

- Only new, site-built single-family homes
- Single site visit per home
- Focus on review of individual code requirements rather than homes
- Sample size of 63 observations of key items
- Energy savings metric

Methodology **Activities**

Step	Activity	Responsibility
1	Develop initial sampling plan	PNNL
2	Conduct stakeholder meeting	Project Team
3	Develop final sampling plan	PNNL
4	Contact jurisdictions and identify homes to sample	Project Team
5	Collect field data	Project Team
6	Analyze and report field data	PNNL
7	Conduct education, training and outreach	Project Team
8	Re-evaluate	PNNL and Project Team

Identified Key Measures

- 1. Envelope tightness (ACH50)
- 2. Window SHGC
- 3. Window U-factor
- 4. Exterior wall insulation
- 5. Ceiling insulation
- 6. High-efficiency lighting
- 7. Foundation insulation
- 8. Duct leakage

QUESTION:

Are there other measures we want to add for Utah?

	ſ			Does Not	1		rieia	1		<i>'</i>	
	Code	1	Meets	Meet	Not	Not	Observation	REScheck or	1	1	1 17
ID	Section	Description	Requirement	Requirement	Applicable	Observable	/l'	HERS Value*	Format	Units	Comments
Envelop	e Wall All 1	Walls (Does not include knee walls)			4						
Wall1	NA	Are the walls predominantly			,	,	,	,	Text		
	L'	frame walls or mass walls?		4	4'	<u> </u>	<u> </u>	<u> </u>	L'		<u> </u>
IN4	303.2	Wall insulation is installed per	,	,		,			Check		
	<u>'</u>	manufacturer's instructions	1	<u> </u>		4'		1	Box		<u> </u>
Envelop	e Wall Fran	me (Does not include knee walls)									
IN3a	402.1.1,	Frame Wall insulation R-value			,	,	,	<u> </u>	Number	R-value	
	402.2.5	(cavity insulation)		4	4'	<u> </u>	<u> </u>	<u> </u>	1	1′	
IN3b	402.1.1,	Frame Wall insulation R-value			,	,	,	<u> </u>	Number	R-value	
	402.2.5	(continuous insulation)		4	4'	<u> </u>	<u> </u>	<u> </u>	1	1′	
M2	NA	What is the wall framing material			,	,	,	<u> </u>	Text		
		wood or steel?		4	4'	<u> </u>	<u> </u>	<u> </u>	<u>(</u>		
Wali2	NA	What is the predominant wall							Number	inches of	
		framing depth? (2 inch, 4 inch, 6									
		inch, 8 inch, etc.)									
											<u> </u>
IQ3		What is the frame wall insulation	C	tata-	Sno	acifi/		to C		otic	on Form
		quality? (I,II,III) - see INFO -		laic	Ohc	FULLY	, Da	la	JIIC	Clic	
		Insulation Grading tab									
Envelop	Envelope Wall Mass (Does not include knee walls)										
FR10a	402.1.1	Mass wall insulation R-value							Number		

Combination of

- REScheck checklists (essentially all of the applicable code requirements),
- Any items added or subtracted for state-specific codes, and
- Additional items needed for energy simulation (including key items)

Details of the **Data Collection Form**

Project team will perform blower door tests

Project team will perform duct leakage tests

Observation of frame cavity insulation installation grade will be done

Jank the walls predominantly

laments. It would write -

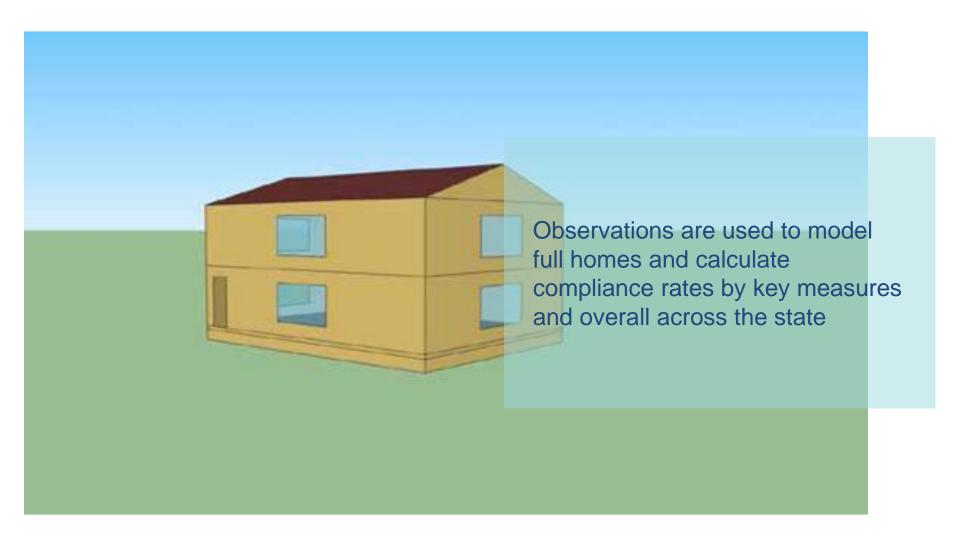
What is the frame sould mustation

benditty" t. A. Ri. - san Ref. C.

Providence Snading talk

2009 IECC Residential Data Collection Form - Envelop

IN3a	402.1.1,	Frame Wall insulation R-value
	402.2.5	(cavity insulation)



IN4 303.2 Wall insulation is installed per manufacturer's instructions

Wall1 NA Are the walls predominantly frame walls or mass walls?

PNNL National **Prototype**

PNNL National **Prototype**

Table 2.1. Single-Family Prototype Characteristics

Parameter	Assumption	Notes			
Conditioned floor area	2,400 ft ² (plus 1,200 ft ² of conditioned basement, where applicable)	Characteristics of New Housing, U.S. Census Bureau			
Footprint and height	30-ft-by-40 ft, two-story, 8.5-ft-high ceilings				
Area above unconditioned space	1,200 ft ²	Over a vented crawlspace or unconditioned basement			
Area below roof/ceilings	1,200 ft ² , 70% with attic, 30% cathedral				
Perimeter length	140 ft				
Gross exterior wall area	2,380 ft ²				
Window area (relative to gross wall area)	Fifteen percent equally distributed to the four cardinal directions (or as required to evaluate glazing-specific code changes)				
Door area	42 ft ²				
Internal gains	91,436 Btu/day	2006 IECC, Section 404			
Heating system	Natural gas furnace, heat pump, electric furnace, or oil-fired furnace	Efficiencies will be based on prevailing federal minimum manufacturing standards.			
Cooling system	Central electric air conditioning	Efficiency will be based on prevailing federal minimum manufacturing standards.			
Water heating	Natural gas, or as required to evaluate domestic hot water-specific code changes				
Btu = British thermal units. IECC = International Energy Conservation Code.					

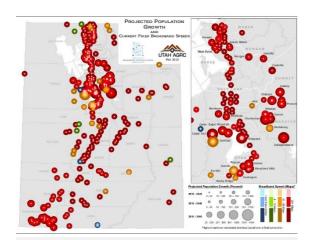
Construction Methods

Are there construction practices that are different in the west/southwest that we didn't see in the first set of studies that are important/prevalent enough to drive focus on?

STANDARD:

Wood frame cavity insulation construction.

Study Area: Utah



63

observations of each key item in each state

Think # of observations rather than # of homes

State-Specific Sampling Plan

Initial sampling plan based on Census Bureau permit database using latest 3 years of permit data by place within the state

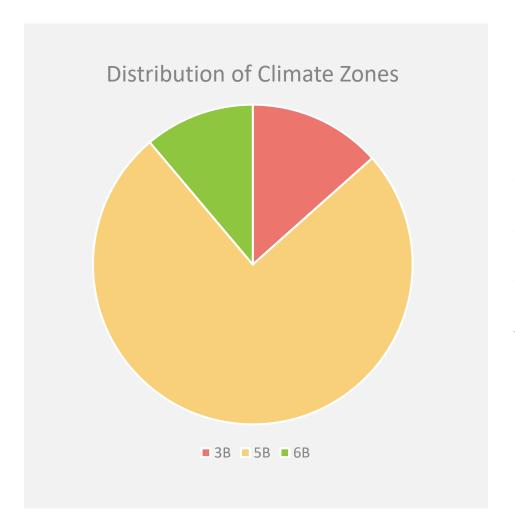
Final sampling plan developed after Project Team and Stakeholder meetings in case any changes or additions to the sampling plan are needed

63 observations will require visiting more than 63 homes per state due to practical limitations of being able to observe all key items in a single site visit

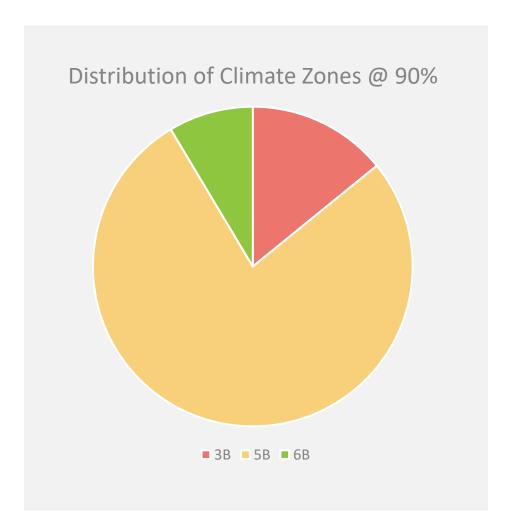
State-Specific Sampling Plan (cont'd)

Proportional random sample

Substitutions that do not introduce bias into the sample are allowed


Distribution of **Places**

Cut Off	Places	% Places
90%	65	31%
95%	88	42%
99%	124	58%
100%	212	100%


Distribution of **Climate Zones**

CZ	Permits	% Permits
3B	2315	13%
5B	13,009	75%
6B	1923	11%

CZs at 90% Cut Off

CZ	Permits	% Permits
3B	2195	14%
5B	11,998	77%
6B	1332	9%

Are we covering enough of the state under a 90% cut off?

Do we think the distribution accurately reflects the climate zones?

Anything else we should consider?

Does data appear accurate?

Did we miss any places?

Are we comfortable with distribution?

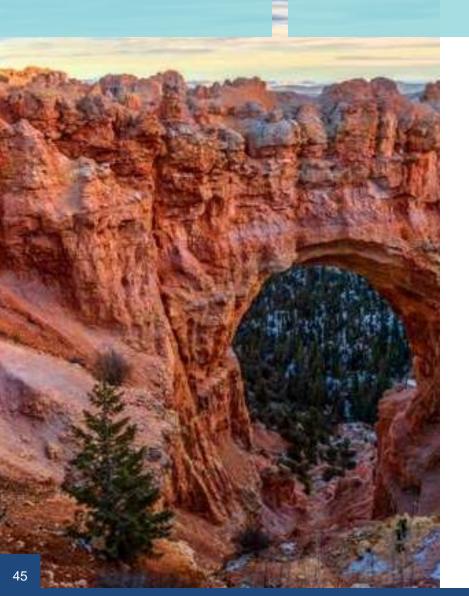
Selecting the Sample Plan

Why might you like one plan over another?

- Compactness / Expansiveness
- Density of permits
- Include or exclude a specific place
- Geographic distribution

Proposed Sample **

Location	Count		
Herriman, Salt Lake County	4	Riverton, Salt Lake County	1
Lehi, Utah County	4	Santaquin, Utah County	2
St. George, Washington County	4	Cedar City, Iron County	3
South Jordan, Salt Lake County	6	Mapleton, Utah County	1
Eagle Mountain, Utah County	4	Farmington, Davis County	1
Saratoga Springs, Utah County	3	Ivins, Washington County	3
		Weber County Unincorporated Area, Weber	
Vineyard town, Utah County	3	County	2
Washington, Washington County	1	Plain City, Weber County	1
Bluffdale, Salt Lake County	2	Millcreek, Salt Lake County	1
West Jordan, Salt Lake County	2	Washington County Unincorporated Area, Washington County	1
Cache County Unincorporated Area, Cache			
County	3	Midway, Wasatch County	1
Syracuse, Davis County	3	Santa Clara, Washington County	1
Wasatch County Unincorporated Area, Wasatch			
County	2	Park City, Summit County	1
West Haven, Weber County	2	Cottonwood Heights, Salt Lake County	1
		Total	63


**This sample was discussed and changes proposed at the stakeholder meeting.

A final sampling plan will be posted on acceptance by DOE and PNNL

Utah Adjustments

Specific items to look at:

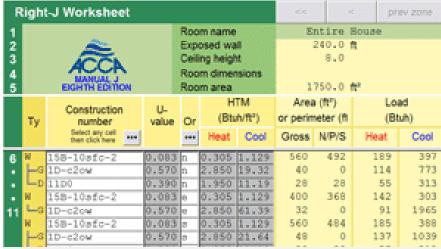
Additional field data collection?

Additional analysis questions?

Construction **Methods**

Are there construction practices that are different in the west/southwest that we didn't see in the first set of studies that are important/prevalent enough to drive focus on?

STANDARD:


Wood frame cavity insulation construction.

HVAC Sizing

Do we have enough information on dry and hot climates enforcement and right sizing of equipment? All previous states were moist climates (A)

STANDARD:

Manual J Calculation

Anything **Else?**

BUILDING ENERGY CODE

Education + Outreach

Previous study included:

Energy Code 101 trainings

Specialist trainings (focused on code officials, mechanical trades, etc)

Fact Sheets

Residential Provisions of the 2012 International Energy Conservation Code

July 2011

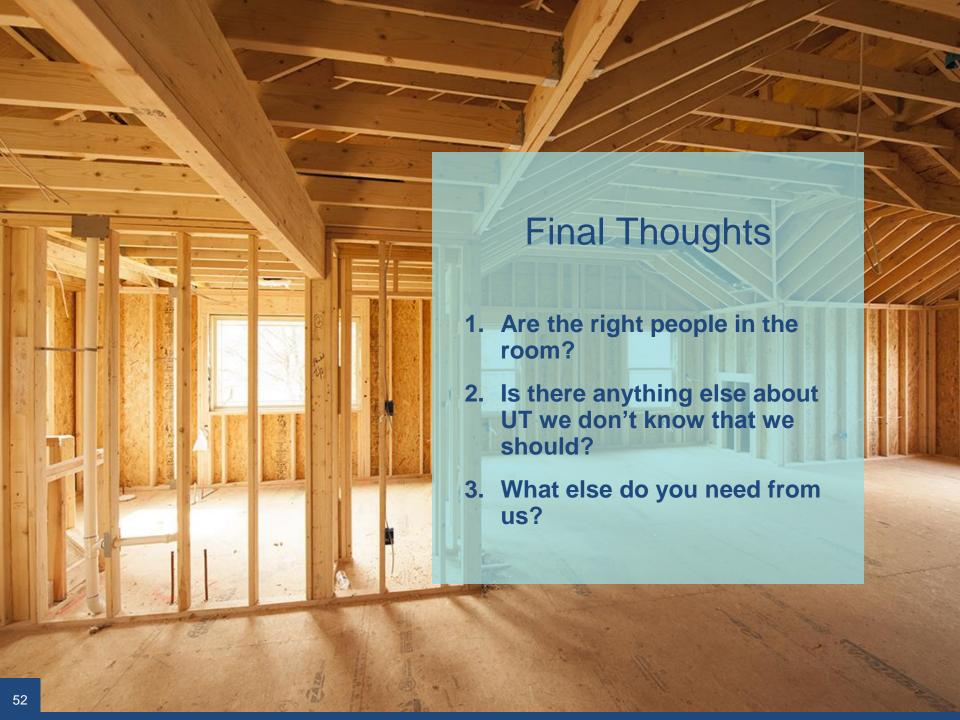
Utah Initial Ideas

In person and online access to all training modules

Online FAQ for questions

Spanish language translation

Jurisdictional admin/enforcement PILOT



- 1. Fines
- 2. Plan Review Stringency/Checklists
- Inspections Stringency/Checklists
- Withhold CO

